К эмульсиям относятся. Эмульсия - это жидкая смесь. Настоящий истинный соус майонез - это эмульсия оливкового масла в сыром яичном желтке с небольшими добавками сахара, соли и лимонного сока

Ежедневная процедура по уходу за кожей практически каждой азиатской представительницы прекрасного пола обязательно содержит 5 шагов:

  1. Очищение;
  2. Тоник / лосьон;
  3. Эмульсия;
  4. Эссенция / сыворотка;
  5. Увлажнение (крем).
"Некоторые производители предлагают вариант, где сыворотка наносится до эмульсии.."

Значимость и функции этих средств, казалось бы, вполне понятны, но все-таки среди этих шагов есть один, часто вызывающий вопросы: Эмульсия.

В этой статье мы поговорим о ней: что такое эмульсия в азиатском уходе, почему она стоит именно на этой ступени ухода, зачем она нужна и почему не является полноценной альтернативой крему.

Эмульсия представляет собой легкий увлажнитель. Обычно изготавливается на водной основе, имеет легкую текстуру и быстро впитываются. Очень часто ее выбирают люди с жирной или комбинированной кожей на замену обычному крему, но это не совсем правильно. Тогда для чего же она нужна на самом деле?

Как было сказано выше, эмульсия используется после нанесения тоника или лосьона, но до увлажняющего крема.

Давайте вспомним о том, зачем нужны тоники: в азиатском уходе тонер представляет собой первый шаг после процедуры очищения кожи.

Если большинство тоников европейских марок призваны нормализовать pH баланс кожи, то в функции корейских средств входит:

  • Нормализация pH баланса;
  • Увлажнение;
  • Питание и стимуляция.

Не просто так тоники выпускаются в жидком виде (грубо говоря, представляют из себя «водичку»). За счет своей молекулярной структуры они способны проникнуть достаточно глубоко в кожу: доказано, что наилучшими проникающими свойствами обладает именно вода. В составах тонеров содержатся все необходимые вещества, которые и напитывают кожу изнутри, в тех слоях, куда крем и прочие более жирные, тяжелые средства с иной молекулярной структурой проникнуть не смогут.

Таким образом, тоник является обязательным шагом в ежедневном уходе за кожей: именно он подготавливает ее к правильному восприятию всех последующих уходовых средств.

Основная функция эмульсии.

После того, как кожа была глубоко увлажнена, необходимо обеспечить барьер, который не даст ей потерять влагу: если это произойдет, кожа окажется не просто недостаточно увлажнена, но еще и не сможет должным образом принять последующий уход. Эмульсия не просто увлажняет и смягчает, но создает на коже липидную пленку и «запечатывает» тоник (а иногда и сыворотку или эссенцию), предотвращая испарение влаги.

Почему так важно соблюдать строгий порядок нанесения средств?

Средства, которые используются в корейской схеме ухода, должны наноситься по принципу «От легкого к тяжелому». Тоник в виде воды, эмульсия на водной основе, сыворотка и только после всего этого – крем.

Как мы уже сказали, тоник, попадая на кожу, способен проникнуть в ее более глубокие слои, а эмульсия, жиросодержащий продукт, его запечатывает. Если сделать наоборот, жидкость просто не сможет проникнуть сквозь липидную пленку и не будет никакого эффекта.

Каждое из средств того или иного этапа ухода за кожей тщательно продумывается: при его создании учитываются все свойства предыдущих и последующих шагов: консистенция, плотность, жирность, функции и др. Таким образом, наибольшая эффективность может быть достигнута только при соблюдении строгого порядка.

Использование тоника и эмульсии в зимнее время.

Распространен стереотип, что в холодное время года кожу можно увлажнять только жирными кремами, а вода (и тоник на водной основе в том числе) замерзнет и травмирует кожу. Это не так. Дело в том, что замерзание воды в коже возможно только в том случае, если температура тела упадет настолько, что оно совсем остынет. То есть, это совершенно невозможно для живого человека вне зависимости от погоды. Единственное, что может произойти и действительно происходит – замерзание воды в самом верхнем слое (эпидермисе), результатом чего являются шелушения. Тем не менее, есть несколько моментов, которые необходимо соблюдать в холодную погоду:

  1. Не пренебрегать полноценной многоступенчатой процедурой увлажнения кожи. В холодное время года кожа страдает не только от непогоды, но и от сухого воздуха, понижение влажности которого неизбежно в отопительный сезон. Один крем просто не в состоянии полноценно увлажнить и напитать, и это доказано. Помните: увлажнения требует не только верхний слой дермы!
  2. Наносить крем не менее, чем за час до выхода на холод. В этот час из увлажняющего средства, нанесенного на кожу, должна испариться вода: это приводит к охлаждению, что может привести к повреждениям кожи, если она окажется на морозе в это время.
  3. С особым вниманием отнестись к выбору средств на холодный период. На разное время года – разная косметика. В зимний период рекомендуется использовать средства, содержащие масла, гиалуроновую кислоту, экстракты алоэ, полисахариды водорослей, антиоксиданты и др.

Не забывайте и о защите от солнца! Какой бы холодной ни казалась погода, вредные ультрафиолетовые лучи остаются таковыми, даже если интенсивность излучения слабее.

Для достижения наилучшего эффекта рекомендуется использовать тонеры и эмульсии из одной серии. Хорошо подойдут средства серий Skin79 Snail Nutrition, Etude House Moistfull Collagen, Etude House Nutrifull Shea Butter и питательные кремы и бальзамы Mizon.

Не забывайте делать питательные маски, использовать сыворотки и масла и не пренебрегайте BB кремами: в зимнее время они являются очень хорошими защитниками.

ПЛАН ЗАНЯТИЯ 26.

Преподаватель : Чумаченко Е.В.

Тема: «Общая характеристика грубодисперсных систем, их классификация. Характеристика эмульсий».

Цели:

Образовательная: изучить свойства грубодисперсных систем и их классификацию.

Воспитательная: привитие интереса к дисциплине.

Развивающая: развитие умения использовать теоретические знания на практике.

Учебно-методическое обеспечение и оснащение: мультимедийное оборудование, компьютер.

Тип занятия – сообщение новых знаний.

Вид занятия – лекция – беседа (с использованием технических средств, презентации, химических опытов).

Методы обучения:

1. По источникам передачи и характеру восприятия информации -

наглядный (демонстрация презентации).

2. По характеру познавательной деятельности – объяснительно-иллюстративный.

Межпредметные связи физика.

Ход занятия.

Организационный момент.

Изучение нового материала:

1. Общие сведения о грубодисперсных системах.

2. Характеристика эмульсий.

Закрепление материала

Обсуждение материала по вопросам.

Домашние задание:

Общие сведения о грубодисперсных системах.

Системы, в которых размер частиц дисперсной фазы не менее 10~ 5 см, называются грубодисперсными. К ним относятся эмульсии, пены, порошки и суспензии, име­ющие более низкую степень дисперсности, чем коллоиды. Грубодисперсные системы по ряду свойств приближа­ются к микрогетерогенным системам, поэтому имеют много общего с коллоидами.

Подобно коллоидам они гетерогенны и обладают сильно развитой поверхностью раздела фаз. Наличие значительной удельной поверхности согласно второму закону термодинамики приводит эти системы к агрегативной неустойчивости. Поэтому агрегативную устойчи­вость таким системам можно придать добавлением стабилизатора, который адсорбируется на частицах дисперс­ной фазы.

Из-за отсутствия броуновского движения эмульсии, пены и суспензии кинетически неустойчивы. В них на­блюдается или оседание частиц под влиянием сил тя­жести (когда плотность вещества частиц больше плот­ности среды), или всплывание частиц (если плотность вещества частиц меньше плотности среды).

Грубодисперсные системы широко распространены в природе и применяются в практической деятельности че­ловека. Особенно важное значение имеют они в техноло­гии приготовления пищи, ибо большинство кулинарных изделий или полуфабрикатов являются эмульсиями, по­рошками, пенами или суспензиями.

Характеристика эмульсий.

Строение и получение эмульсии. Эмульсии - гетеро­генные системы из взаимно нерастворимых жидкостей. В таких системах одна из жидкостей (дисперсная фаза) извешена в другой (дисперсионной среде) в виде ка­пелек.

Чаще всего эмульсии состоят из воды и второй жид­кости, которую принято обозначать как «масло». Так, к числу «масел» относятся бензин, керосин, бензол, масламинеральные, животные, растительные и другие неполярные жидкости.

Можно диспергировать гидрофобную жидкость в во­де, например приготовить эмульсию бензола в воде. Вполне возможно диспергировать и воду в бензоле и получить при этом эмульсию воды в бензоле. Следователь­но, принципиально могут быть эмульсии двух типов: масло в воде (сокращено м/в), где дисперсной фазой будет масло, а дисперсионной средой - вода, и вода в масле (сокращено в/м), когда дисперсная фаза - вода, дисперсионная среда - масло. Примером эмульсии первого типа может служить коровье молоко (эмульсия жира в гидрозоле белка), а эмульсии второго типа - природная нефть, различные медицинские мази (эмульсии воды в масле).

Эмульсии обычно получают механическим диспергированием (эмульгированием) одной жидкости в другой.

Эмульгируемые жидкости сильно перемешивают, встряхивают или подвергают вибрационному воздействию с помощью мешалок, коллоидных мельниц, ультразвука. В кулинарной практике это выполняется на специальных взбивальных машинах или иногда вручную различными взбивалками.

Благодаря огромному увеличению поверхности разде­ла между двумя жидкостями эмульсия приобретает боль­шой запас свободной поверхностной энергии Е и стано­вится термодинамически неустойчивой. Согласно второму закону термодинамики такая система будет стремить­ся самопроизвольно перейти в устойчивое состояние пу­тем уменьшения запаса свободной поверхностной энер­гии. Этот самопроизвольный процесс может происходить или за счет уменьшения поверхностного натяжения σ, или за счет уменьшения величины поверхности S, так как свободная поверхностная энергия связана с поверхност­ным натяжением и суммарной величиной поверхности уравнением E=σS.

Если понижение запаса свободной поверхностной энергии пойдет за счет уменьшения суммарной поверх­ности системы, это выразится в слиянии капелек жира, в уменьшении числа жировых капелек. Слияние капель эмульсии называют коалесценцией, она подобна коагу­ляции и быстро заканчивается расслоением системы на две отдельные жидкие фазы с минимальной поверх­ностью раздела. Такое слияние приводит к разрушению эмульсии. Следовательно, подобно коллоидам, эмульсии являются агрегативно неустойчивыми системами.

Понижения поверхностной энергии эмульсии можно добиться уменьшением поверхностного натяжения. Это­го можно достичь введением в систему какого-либо по­верхностно-активного вещества, способного адсорбиро­ваться на поверхности капелек эмульсии и препятство­вать их слиянию. Подобные вещества, стабилизирующие эмульсию, называют стабилизаторами или эмульгатора­ми . При этом суммарная поверхность системы остается неизменной, а образующаяся эмульсия становится агре­гативно устойчивой.

К разбавленным эмульсиям относятся системы, в ко­торых объемная доля дисперсной фазы менее 1%. Они устойчивы без специальных эмульгаторов. Устойчивость разбавленных эмульсий объясняется довольно малыми размерами капелек жидкости и незначительной концен­трацией этих систем.

В концентрированных эмульсиях объемная доля дис­персной фазы от 1 до 74%. Увеличение концентрации приводит к понижению агрегативной устойчивости, ибо увеличивается вероятность столкновения, а следователь­но, и коалесценция капель. Поэтому для повышения аг­регативной устойчивости концентрированных эмульсий вводят эмульгатор, который, адсорбируясь на границе раздела двух жидкостей, уменьшает поверхностное на­тяжение. Образующиеся на поверхности капелек эмуль­гированной жидкости прочные адсорбционные пленки препятствуют коалесценция. Система становится агрегативно устойчивой. В зависимости от типа эмульсий следует брать гидрофильные или гидрофобные эмульга­торы той или иной степени дисперсности.

Эмульгатор должен быть подобен той жидкости, ко­торая образует дисперсионную среду. Так, эмульсии типа м/в стабилизируются растворимыми в воде высоко­молекулярными соединениями, например белками или водорастворимыми гидрофильными мылами (олеатом натрия и вообще мылами щелочных металлов). Эмульга­торами при получении эмульсии типа в/м служат высоко­молекулярные вещества, нерастворимые в воде, но хоро­шо растворимые в углеводородах (каучук, смолы и др.), а также нерастворимые в воде мыла многовалентных ме­таллов.

В адсорбционных слоях молекулы эмульгатора, содер­жащие полярные и неполярные группы (мыла, белки), ориентируются полярными концами к полярной жидкос­ти, а неполярными к неполярной. На поверхности капе­лек жидкости в эмульсиях типа м/в и в/м будет наблю­даться противоположная ориентация молекул таких эмульгаторов.

Подобные оболочки из поверхностно-активных ве­ществ на поверхности капелек эмульсии довольно проч­ны и упруги. При соударении частиц они, как правило, не разрушаются - эмульсии приобретают устойчивость.

Кроме высокомолекулярных соединений и мыл эмульгаторами для эмульсий как первого, так и второго типа могут служить порошки, так называемые твердые эмуль­гаторы. Однако они менее эффективны, чем мыла и высокополимеры. Порошки должны быть высокодисперсными и обязательно должны лучше смачиваться той жидкостью, которая служит дисперсионной средой; в этом случае большая часть твердых частиц будет на­ходиться с внешней, наружной стороны капелек, образуя оболочки высокой прочности, которые предохраняют их от коалесценции при столкновениях. Если же частицы порошка лучше смачиваются жидкостью, которая пред­ставляет собой дисперсную фазу, то большая часть каждой частицы окажется втянутой внутрь капель, поверх­ность капелек эмульсии окажется незащищенной, и та­кие эмульсии будут коалесцировать. Поэтому гидрофильные порошки, например мука, мел, оксид же­леза (III), глина, стабилизируют эмульсии типа м/в, тогда как сажа и другие гидрофобные порошки стабили­зируют эмульсии типа в/м.

Высококонцентрированные эмульсии с концентрацией дисперсной фазы более 74% называют желатинирован­ными . В подобных эмульсиях капельки дисперсной фазы сильно деформированы. Из шариков они превращаются в многогранники, последние могут быть плотнее упако­ваны. Поэтому высококонцентрированные эмульсии мо­гут содержать дисперсной фазы до 99% . Дисперсионная среда в таких эмульсиях превращается в тонкие пленки, разделяющие дисперсную фазу на многогранники. Желатированные эмульсии твердообразны, сохраняют свою форму, не растекаются. Примером мо­гут служить сливочное масло, маргарин, майонез, гус­тые кремы.

Разрушение эмульсий. Во многих случаях разрушение эмульсии - деэмульгирование - может быть не менее важным, чем их образование. Деэмульгирование сводит­ся к коалесценции эмульсии, т. е. к расслаиванию ее на свободные жидкие фазы. Разрушение эмульсий может быть достигнуто следующими способами:

1) химическим разрушением защитных пленок соот­ветствующими веществами, например разрушение серной кислотой эмульгатора молока при определении его жирности;

2) разрушением защитных пленок механическим воз­действием , например, при сбивании сметаны и сливок для получения масла (здесь де эмульгирование сопровож­дается концентрированием, т. е. образованием желатини­рованной эмульсии);

3) термическим разрушением - расслоением эмуль­сий при нагревании ; при этом уменьшается адсорбция эмульгатора и увеличивается число столкновений капе­лек, что ведет к их слиянию. Такое разрушение (расслое­ние) эмульсий наблюдается при длительном кипячении соусов, при изготовлении топленого масла. Разрушение эмульсий происходит и при понижении температуры - вымораживании. Например, при хранении майонеза ниже -15° С замерзает дисперсионная среда, что при последующем оттаивании ведет к его разрушению.

Значение эмульсий . Эмульсии широко распростране­ны в природе (сырая нефть, млечный сок растений-кау­чуконосов). Эмульсии используются и образуются при многих производственных процессах. Эмульсиями явля­ются разнообразные продукты питания; молоко, сливоч­ное масло, маргарин, сливки.

Молоко - это полидисперсная система, компоненты которой находятся в различной степени дисперсности. В теплом молоке жир находится в эмульгированном со­стоянии, а белковые вещества и часть солей - в коллоид­ном, другая часть солей в виде истинных растворов. При стоянии молока образуется слой концентрированной эмульсии - сливки. Для повышения устойчивости его гомогенизируют. В процессе гомогенизации крупные жи­ровые капельки молока уменьшаются в несколько раз. Такое гомогенизированное молоко очень устойчи­во и не образует слоя сливок в течение нескольких ме­сяцев.

Из молока изготовляют сливочное масло и маргарин. Маргарин представляет собой эмульсию типа в/м, а сли­вочное масло - сложную структурированную эмульсию, содержащую элементы обоих типов эмульсии м/в и в/м в разных соотношениях.

Велико значение эмульсий и эмульгирования в кули­нарной практике. Физиология питания ставит перед тех­нологией приготовления пищи задачу не только увели­чить усвояемость пищи, но и уменьшить энергетические затраты на ее усвоение и облегчить течение биохимических реакций в пищеварительном тракте. С этой точки зрения имеет большое значение, например, эмульги­рование жиров в кулинарной практике. В качестве примера рассмотрим особенности приготовления майо­незов.

Дисперсионная среда в этих эмульсиях - вода желт­ков и уксуса, дисперсная фаза - растительное масло. Эмульгаторами служат лецитин и виттелин желтка и белки порошка горчицы. Жира в майонезе содержится 75%. Он раздроблен на мельчайшие шарики. При ручном взбивании размер их составляет 1,5-2 10 -3 см, а при машинном - от 10 -4 до 4 10 -4 . В 1 г соуса содержится до 1 10 12 жировых шариков. На такое раз­дробление жира приходится затрачивать значительную работу. Если бы жир входил в пищу неэмульгированным, то эту работу должен был бы выполнять организм человека. Кроме того, если поверхность 1 см 3 масла равна всего 6 см 2 , то в майонезе она достигает 60000 см 2 . При таком увеличении поверхности во много раз облег­чается реакция между жирами и водой под действием ферментов пищеварительного тракта. Чем мельче жировые шарики, тем устойчивее полу­чается эмульсия. Однако большая степень раздробления жира (дисперсность) в соусах типа майонез играет и отрицательную роль.

Большая поверхность приводит к ускорению процессов окисления и прогоркания жиров под действием света и кислорода. Поэтому майонез необ­ходимо хранить в темном месте и в герметический таре.

Нежелательным является эмульгирование жира в процессе варки мясных бульонов (обычно при сильном кипении), так как эмульгированные жиры легко гидролизуются (омыляются) и выделяющиеся жирные кислоты придают бульонам вкус сала и запах мыла.

Молоко представляет собой эмульсию жировых шариков в молочной плазме. Под плазмой молока понимают свободную от жира молочную жидкость, в которой все остальные составные части молока присутствуют в неизменном виде.

Свежевыдоенное молоко – это двухфазная эмульсия. При охлаждении молока часть триацилглицеринов в жировых шариках выкристаллизовываются и образуется трех- и многофазная эмульсия (дисперсия). Диаметр жировых шариков в молоке колеблется от 0,1 до 22 мкм, в среднем от 3 до 6 мкм (преобладают). Распределение жировых шариков по величине зависит от ряда факторов: породы, стадии лактации животных, рационов кормления, режимов доения и механической обработки молока. Размеры жировых шариков имеют практическое значение, так как определяют степень перехода жира в продукт, например, при получении сливок сепарированием молока, а также при производстве масла, сыра, творога. Количество жировых шариков в молоке велико (около 15 . 10 8 в 1 см 3), что влечет за собой образование чрезмерно большой общей поверхности.

10.3.1. Факторы агрегативной устойчивости жировой эмульсии

Жировая эмульсия молока характеризуется высокой агрегативной устойчивостью, то есть способностью длительное время сохранять состояние дисперсных частиц. Это обусловливается наличием на поверхности жирового шарика (глицеридного ядра) оболочки, препятствующей контакту и последующему слиянию глицеридных глобул при столкновении жировых шариков друг с другом, и ее особыми свойствами.

Состав и структура оболочек жировых шариков. В настоящее время установлено, что оболочка жировых шариков состоит из основных структурных компонентов: липидов и белков, имеет толщину (по данным разных авторов) от 30 до 70 нм и более и включает в свой состав, кроме липидов и белков, ферменты, жирорастворимые витамины, минеральные элементы.

Хотя состав и физико-химические свойства оболочечного материала изучены достаточно подробно, организация его компонентов в оболочке точно еще не определена. Существует несколько моделей структурной организации оболочек (Н.Кинга, А.Мортона, Х.Бауэра, В.Своупа и Дж. Бруннера, Мак Ферсона и Китчена и др.). В отличие от первых моделей, базирующихся на трактовке ее как адсорбционной межфазной пленки, в последние годы все чаще проводится аналогия между составом и структурой оболочек жировых шариков (ОЖШ) и биологических мембран. Имеет смысл обсудить модель строения оболочек жировых шариков, предложенную В.Своупом и Дж.Бруннером, позволяющую более наглядно представить их структурную организацию. Схематически строение ОЖШ с учетом ее сольватации со стороны жировой и водной фаз представлено на рисунке 10.3.

Согласно рассматриваемой модели ОЖШ состоит из двух основных слоев: внутреннего (слой 1), в основном белкового, и внешнего (наружный слой 2), состоящего из фосфатидно-белковых комплексов. Со стороны глицеридного ядра жирового шарика к внутреннему белковому слою 1 обращен сольватный слой 4, состоящий из высокомолекулярных насыщенных триацилглицеринов, «смачивающих» гидрофобные кольца оболочечного белка внутреннего слоя оболочки. Со стороны водной фазы к гидрофильным группам гликопротеидов, входящих в состав наружного липопротеинового слоя 2, и гидрофильной части фосфолипидов, находящихся в этом слое, ориентирован гидратный слой, образованный молекулами воды.

Таким образом, оболочка жирового шарика состоит из двух слоев – внутреннего и наружного (внешнего). Внутренний слой образуется из плазматической мембраны секреторных клеток молочной железы, в основном белкового характера, и плотно прилегает к кристаллическому слою высокоплавких триацилглицеринов ядра. На внутренней мембране адсорбирован внешний слой оболочки, состоящей из липопротеидных мицелл различного размера.

Рис. 10.3. Модель строения оболочки жирового шарика

(по В.Своупу и Дж.Бруннеру)

Липопротеидные мицеллы содержат фосфолипиды, гликолипиды, нуклеиновые кислоты, белки и большую часть ферментов. Отдельные липопротеидные мицеллы могут мигрировать в плазму при хранении, механической и тепловой обработке молока. Одновременно на внутренней мембране могут адсорбироваться иммуноглобулины и липаза (при хранении сырого молока), а также казеин и денатурированный β-лактоглобулин (при тепловой обработке). Так как оболочки жировых шариков содержат на поверхности полярные группы – фосфатные фосфатидилхолина и других фосфолипидов, карбоксильные и аминогруппы белков, карбоксильные группы сиаловой кислоты и других углеводных компонентов, то на поверхности шариков создается суммарный электрический заряд – отрицательный (их изоэлетрическое состояние наступает при рН молока около 4,5%). Относительно отрицательно заряженной поверхности жирового шарика адсорбируются катионы Са ++ , Mg ++ , в результате чего образуется двойной электрический слой, аналогичный слою, который возникает на поверхности мицелл казеина. Таким образом, на поверхности жировых шариков возникает электрический потенциал около 15 мВ и электростатические силы отталкивания превышают силы молекулярного притяжения в соответствии с теорией устойчивости дисперсных систем (теорией ДЛФО). Дополнительное стабилизирующее действие оказывают гидратная оболочка, образующаяся вокруг полярных групп внешнего слоя и двойной электрический слой.

Более поздние исследования состава и свойств структурных белков, входящих в состав оболочек жировых шариков, электронно-микроскопические исследования их структурной организации с другими компонентами, проведенные Мак Ферсоном и Китченом, а также другими учеными, позволили сделать следующие выводы и схематично представить модель строения ОЖШ (рис. 10.4).

Рис. 10.4. Модель оболочки жирового шарика (по Мак Ферсону и Китчену): 1 – фосфолипиды; 2, 3 – гликопротеиды; 4 – интегральный гидрофобный белок; 5 – ксантиноксидаза; 6 – 5 ` -нуклеотидаза; 7 – слой высокоплавких триацилглицеринов

В состав ОЖШ входит до сорока белковых компонентов, главным образом плохо растворимых гликопротеидов, содержащих углеводы: галактозу, N-ацетилгалактозамин,N-ацетилгклюкозамин,N-ацетилнейраминовую (сиаловую) кислоту.

Гликопротеиды, относящиеся к внутренним белкам, как правило, пронизывают ОЖШ: один их конец взаимодействует со слоем высокоплавких триацилглицеринов, находящихся на поверхности глицеридного ядра, другой, содержащий углеводный компонент, выступает из мембран и ориентирован к водной фазе (см.компоненты 2 и 3 на рис. 10.4).

Важным компонентом оболочки является нерастворимый (гидрофобный) структурный белок, встроенный во внутренний слой оболочки и названный бутирофилином (см.компонент 4 на рис. 10.4).

По мнению исследователей большая часть белков ОЖШ происходит из плазматической мембраны секреторных клеток, либо может строиться частично из плазматической мембраны и частично – из мембраны вакуолей аппарата Гольджи, а также могут использоваться белки цитоплазмы секреторных клеток.

К перифирическим растворимым белкам ОЖШ относится более десяти ферментов: ксантиноксидаза; щелочная и кислая фосфатазы; 5`-нуклеотидаза; плазмин и др. Большая часть их идентична ферментам клеточных мембран.

В оболочках жировых шариков обнаружены минеральные элементы: Cu,Fe,Mo,Zn,Ca,Mg,Se,Naи К.

Таким образом, по Мак Ферсону и Китчену оболочка жировых шариков состоит из двух слоев различного состава: внутреннего, тонкого, плотно прилегающего к жировой глобуле – слоя высокоплавких триацилглицеринов и внешнего, рыхлого (диффузного), легко десорбируемого при технологической обработке молока. Поскольку внешний слой образован большей частью фосфолипидами и гликопротеидами, следовательно на поверхности жировых шариков за счет полярных групп этих компонентов создается суммарный отрицательный заряд и, как следствие, двойной электрический слой и гидратная оболочка.

Всеми исследованиями отмечается достаточно высокая механическая прочность оболочек жировых шариков, однако, пока остается нерешенным вопрос, какие силы ответственны за поддержание их структуры. Предполагают, что высокая механическая прочность оболочки обусловлена прежде всего наличием в ней внутреннего слоя, состоящего из специфического гидрофобного белка, а также гидрофобными и электростатическими взаимодействиями между структурными компонентами оболочки.

Таким образом, анализируя рассматриваемые модели строения оболочек жировых шариков, можно сделать вывод, что несмотря на некоторые различия в организации их структурных компонентов, общим для них является способность стабилизировать жировую эмульсию. В нативном молоке эмульсия жира в плазме достаточно устойчива. К факторам стабильности жировой эмульсии молока следует отнести следующие. Во-первых, наличие на границе раздела фаз структурно-механического барьера – оболочки жирового шарика, являющейся модифицированной клеточной мембраной, внутренний слой которой состоит из специфического гидрофобного белка, обусловливающего ее механическую прочность. Именно структурно-механический барьер препятствует контакту и последующему слиянию глицеридных ядер друг с другом. Во-вторых, как уже отмечалось, в результате диссоциации ионогенных групп компонентов, входящих в состав наружного слоя оболочки, на поверхности жировых шариков возникает отрицательный электрический потенциал, следствием чего является их отталкивание при сближении. Дополнительное стабилизирующее действие оказывает образование двойного электрического слоя относительно заряженной поверхности жировых шариков и ее гидратация.

При хранении молока и при производстве большинства молочных продуктов необходимо сохранить стабильность эмульсии молочный жир – плазма, максимально исключив воздействие факторов ее дестабилизации, так как деэмульгированный жир в значительно большей степени подвержен ферментативному и окислительному воздействиям. При выработке сливочного масла, напротив, ставится задача дестабилизировать жировую эмульсию с целью выделения из нее дисперсной фазы. По этой причине имеет смысл проанализировать факторы нарушения устойчивости жировой эмульсии.

Эмульсия - это смесь веществ. В ней один компонент состоит из мельчайших частиц, нерастворимых в другом. Этот ингредиент называется "дисперсной фазой". Другое вещество - дисперсная среда. В ней распределяется первая составляющая. "Эмульсия" - это термин, имеющий латинское происхождение. В переводе оно обозначает "выдаиваю, дою". Рассмотрим это понятие подробнее.

Общие сведения

Из любых двух жидкостей, которые не смешиваются и не реагируют химически, можно делать эмульсию. Одним из компонентов почти всегда является вода. Другое вещество состоит из слабополярных или нейтральных молекул (например жиры). Первая известная всем эмульсия - это молоко. Здесь частицы жира дисперсируются в воде. Размер мельчайших частиц дисперсной фазы составляет 1-50 мкм, поэтому эмульсии относятся к грубодисперсным системам. Низкоконцентрированные жидкости - неструктурированные. Смеси с высокой концентрацией - структурированные. По термодинамическим признакам нефтяная эмульсия - это нестабильная система. Размеры у капель фазы большие, и смесь будет неструктурированной.

Классификация

Тип получаемой эмульсии зависит от соотношения объемов фаз и их состава, от количества и природы эмульгатора, его химической активности, от способа и метода смешивания.

Химическое воздействие на эмульсию, давление, изменение состава может привести к инвертированию.

  1. Лиофильная эмульсия - это смесь, формирующаяся спонтанно, самопроизвольно. Она термодинамически считается устойчивой. Примером могут служить критически стабильные эмульсии при достижении предельной для смешивания фаз температуре. К этой же категории относят смазочные масла и жидкости для охлаждения.
  2. Лиофобная эмульсия - это смесь, образованная при механическом, акустическом или электрическом смешивании. Термодинамически они крайне неустойчивы. Такие смеси без эмульгаторов долго не существуют. Хорошие компоненты для них: ПАВ, высокомолекулярные, растворимые в воде вещества, твердые тела с высокой дисперсностью.

Получение

Есть две технологии производства эмульсии. Первый - путь мелкого дробления фракций. Второй - процесс пленкообразования с последующим разрывом на мелкие части. В первом варианте вещество медленно добавляется в дисперсную систему. При этом необходимо, осуществляя присоединение, постоянно на большой скорости перемешивать. В этом случае качество смеси будет зависеть от разных факторов. В частности, от скорости перемешивания, введения и объема диспергируемого вещества, его концентрации, температуры и кислотности среды. Второй метод - это процесс, при котором образуется пленка на поверхности другой фазы. Снизу нагнетается воздух. Пузырьки разрывают пленку на мелкие капли и перемешивают весь объем жидкости. В наше время начали вместо воздуха использовать вызывает дробление пленки на еще более мелкие части.

Разрушение смесей

С течением времени происходит самопроизвольный распад эмульсии. Бывают случаи, когда необходимо ускорить этот процесс и уменьшить концентрацию соединения. Данная необходимость актуальна, когда наличие высококонцентрированной эмульсии мешает процессу обработки материала или его правильному применению. Ускорить сам процесс уменьшения можно несколькими способами:


Применение

Спектр применения эмульсий в промышленности очень широк. В частности, соединения используют:

  1. При производстве маргарина и масла.
  2. В мыловарении.
  3. При изготовлении материалов из натурального каучука.
  4. В строительстве. Например, - это негорючее соединение.
  5. В сельском хозяйстве: пестициды - различные препараты, уничтожающие вредителей растений.
  6. Для медицинских целей: изготолвение различных лекарств, мазей, косметики.
  7. В живописи используют различные эмульсионные краски.
  8. Косметика для волос, эмульсии, защищающие поверхность волоса при окрашивании. Например, проявляющая эмульсия (это окислитель для краски).
  9. В используется смесь воды с нефтью, в которой диспергирование одной фазы жидкости в другую происходит мельчайшими капельками - глобулами.

Что представляет собой эмульсия каждый знает ещё с детства, просто сам по себе научный термин известен не всем. Так что же это такое — эмульсия?

Данное слово происходит от латинского «emulgeo», значение которого «доить» или «выдаивать». Это связано с тем, что самая распространённая эмульсия — обыкновенное молоко.

Но научный термин выглядит для понимания немного сложнее. Эмульсия — это гомогенная дисперсионная система, состоящая из двух жидкостей, не способных смешаться до конца.

Если оценивать невооружённым глазом, то такая система не отличается от однородной жидкости, т.к. вся суть данного явления заключается в существовании микроскопических капель, распределённых в основной жидкости. В случае с молоком это капли молочного жира, равномерно распределённые в воде.

Виды эмульсий

Существуют различные критерии, по которым происходит распределение эмульсий на виды. Вот некоторые из основных критериев:

  • Состав жидких фаз;
  • Соотношение между жидкими фазами;
  • Способ эмульгирования;
  • Природа эмульгатора.

С опорой на эти и некоторые другие пункты учёные выделили два основных вида эмульсий:

Прямые эмульсии

Образовываются в ходе диспергирования в полярной воде неполярной жидкости. Самым ярким примером является подсолнечное масло в воде.

Более предпочтительными эмульгаторами для этого вида эмульсий являются всевозможные мыла. Они адсорбируются на поверхности капель, уменьшают поверхностное натяжение, а так же повышают механическую прочность.

Инвертные эмульсии

Такие эмульсии обратны прямым и относятся к типу «вода в масле».

Эмульгаторами для этого вида являются нерастворимые соли жирных кислот, к ярким примерам которых относятся кальциевые, алюминиевые и магниевые.

Способы получения эмульсий

Выделяют всего два пути получения эмульсий:

  • Дробление капель;
  • Образование и разрыв плёнок.

Первый путь представляет собой медленное добавление дисперсионной фазы к дисперсионной среде в присутствии при перемешивании эмульгатора.

Благодаря такому подходу образуется множество микроскопических капель, в дальнейшем не растворяющихся в основной среде и распределённых равномерно.

Количество и размеры капель зависят от скорости перемешивания, температуры, скорости введения дисперсионной фазы и др.

Путь образования и разрыва плёнок. Дисперсионная фаза, не способная смешаться с основной средой, образует на поверхности основной среды плёнку.

Данную плёнку разрывают пузырьками воздуха, выходящими из специальных отверстий на дне сосуда. В итоге происходит эмульгирование при интенсивном перемешивании.

Применение

В промышленности эмульсии распространены в огромных масштабах. К примеру неоднородные жидкие соединения применяются в:

  • Мыловарении;
  • Производстве масла;
  • Сельском хозяйстве (пестициды);
  • Строительстве (битумная эмульсия);
  • Живописи (проявляющая эмульсия);
  • Нефтяной промышленности.

И это далеко не полный список применения эмульсий. Присмотритесь, и вы увидите, что они окружают нас повсюду — чай, молоко, ванна с морской солью, всевозможные кремы — всё это эмульсии. И знание этого может быть применено вами повсеместно, стоит только немного пофантазировать.

Это интересно